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Sequencing Technology



Logistics

• Introduction

• Please feel free to ask questions at any point

• Slides will be posted on workshop website (*)

• One break at about 90 minutes



Course Outline

• Terminology

• History of Sequencing

• Current Sequencing Technologies

• Prepping DNA for Sequencing
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What is a read?  What is a library?

• Definition of “read”: A single sequence from one fragment in the 
sequencing library (one cluster, bead, etc.)

• If generating paired reads, then 2 reads derived from each fragment 
in the library

• Definition of “library”: A collection of DNA fragments that have been 
prepared to be sequenced

• Definition of “coverage”: The number of reads spanning a particular 
base in the genome



Where does library come from?



Types of reads

• Fragment reads (come from fragment libraries)

– Single read in one direction from a fragment

• Paired end reads (come from fragment libraries)

– Two reads from opposite ends of the same fragment

– Reads point towards each other



Types of reads

• Mate Pair Reads (come from Jumping Libraries)

– Long fragment of DNA is circularized

– Junction is captured (e.g., by biotinylated adapter)

– Remainder is cleaved (many methods)

– Ends are sequenced

– Read orientations depend on the exact method

or

or



Types of reads

• Linked reads (several methods)

– Long (10-100kb) DNA isolated

– DNA is labeled (barcode, mutation, etc.)

– Read pairs generated from specific long fragments

– Sequence normal read pairs

– Can use reads normally for alignment/assembly

– Can also group reads by haplotype of origin

– In some methods, can assemble the long fragment
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Sanger Sequencing (1977)

Image credit: https://unlockinglifescode.org/timeline/11



How Sanger Sequencing Works

Single-stranded DNA

Split into four reactions

A

A
A

A

A
A

A

A

A-term
G

T

C

C
C

C

C

C C

C
C

G

G

G

G

G
G

G

G

T

T

T T

T

T

T

T

Add labeled primer and 
nucleotides, one of which is 
sometimes terminated

Allow the strands to extend

A

G

C

T

G

A

C

T

A

G

A

T

C

G

T

C

G

A

C

T

G

A

T

C

T

A

+

A

G

C

T

G

A

C

T

A

G

A

T

C

G

T

C

G

A

+

A

G

C

T

G

A

C

T

A

G

A

T

C

G

T

C

G

A

C

T

G

A

+



Automation of Sanger (1986)

• Replacement of radioactive label with laser-excitable 
fluorescent dyes

• Allowed all four nucleotides to be run in a single lane of a gel

• Base sequence could be read off with a camera as the 
fluorescing strands passed a certain point near the end of the 
gel

• Signal from each lane could be converted to a nucleotide 
sequence by a computational process called base calling



Fluorescent slab gel image

Image credit: http://www.mun.ca/biology/scarr/How_it_works.htm

Image credit: NCBI Trace Archive



Capillary Gel Sequencing (1998)

• Replacement of 2D slab gels with an 
array of enclosed capillaries

• Cleaner signal processing

• Fully automated loading

• Faster run times



Cost Curve for Sanger Gel Sequencing



Other Early Technologies

• Maxam-Gilbert sequencing

• LI-COR

• Molecular Dynamics MegaBACE

• Pyrosequencing

• Mass spectrometry



Statistics of Apex Capillary Sequencing

• 96 reads per run

• 700-1000 bases per read

• Very high base accuracy over most of the read length (<1/100,000)

• ~$1 per read

• ~1 run per hour

• ~2 million bases per machine per day

• Large sequencing centers could do a single mammalian genome to 
assembly depth in about 2-3 months



Limits on Sanger Gel Performance

• Tradeoff between loss of signal due to diffusion and loss of 
resolution at high voltage or short gel length

• Longer gels/capillaries or lower voltages provide better 
separation of short to medium fragments

• Longer gel run times mean more diffusion of fragments in the 
gel, which blurs adjacent signal and spreads peaks

• The maximal high quality read length is around 1000 bp



454 Sequencing

• First “Next Generation” or massively parallel technique

• Based on pyrosequencing

• Emulsion PCR DNA prep on beads

• Beads loaded into a picotiter plate for sequencing



454 Sequencer



Rover



Emulsion PCR

Image credit: 
https://users.ugent.be/~avierstr/nextgen/nextgen.html



454 Picotiter Plate

Image credit: 

http://www.mbio.ncsu.edu/MB451/lectureModules/molecularEcology/molec
ularSurveys/454/454.html



Pyrosequencing



454 Output: the Flowgram

Image credit: https://contig.wordpress.com/2010/10/28/newbler-input-i-the-sff-file/



Cost Curve for 454 Sequencing



Statistics of Apex 454 Sequencing

• 1 million reads per run

• 400-500 bases per read (750?)

• High error rate (~1.5%), very motif dependent (homopolymers)

• Cost several thousand dollars per run

• ~10 hours per run

• ~1 billion bases per machine per day



Limits on 454 Performance

• Failure to accurately read homopolymers or sequences near 
homopolymers; physical limit on ability to read the full 
incorporation

• Loss of signal over time

• Signal/noise degradation due to asynchrony of extending 
strands

• Length of fragment that could be amplified on bead in emPCR

• No ability to sequence the second strand of DNA or do non-
contiguous reads
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Illumina (Solexa) Sequencing

• Sequencing of DNA strands amplified in situ on a glass slide

• Use reversible terminators to sequence one base at a time



Bridge Amplification



Reversible Terminator Sequencing



(Not so) Recent Changes in Illumina

• Patterned flowcells

• Exclusion amplification

• 2 color chemistry



Patterned Flowcells



Exclusion Amplification

• No more bridge PCR on patterned flowcells

• Fragments rapidly amplify as soon as they 
arrive at the patterned spot

– Prevents a second fragment from amplifying there

– Allows overloading to maximally fill flowcell

– (Not perfect)

• Exact method is not described (see patent)

• Results in “proximal duplicates” or “pad hops”

• Problems with “index switching”



Two Color Chemistry

• One base (A) labeled with 2 colors

• One base (G) unlabeled

• Allows faster image scanning

• Dead clusters look like runs of G

– Mostly do not align (in human)

– ”Supplemental” alignments



Complete Long Reads

https://www.illumina.com/produc
ts/by-brand/complete-long-reads-
portfolio.html



Statistics of Apex (so far) Illumina

• 25 billion read pairs per run

• 300 bases per read pair

• Relatively low error (<1%), some context dependency

• Cost ~$25,000 per run (for NovaSeq X Plus on largest flow cell 
size)

• ~2 days per run

• ~4 trillion bases per machine per day



Limits on Illumina Performance

• Loss of signal over time

• Signal/noise degradation due to asynchrony of extending 
strands

• Viability of sequencing reagents over the course of a run

• Length of fragment that could be amplified into clusters on the 
slide



Cost Curve for Illumina Sequencing

454
Illumina GA

Illumina HiSeq X



Other Next Generation Technologies

• SOLiD
– Ligation rather than polymerase based

– Used redundant base sampling with error correction (“color space”) to 
enhance error rate (<0.1%), but made analysis very challenging

– Short reads, limited second read capability

• Ion Torrent
– Like 454 (emPCR, well-based sequencing)

– Uses direct measurement of pH changes with base addtion (”post-light”)

• Helicos
– Like Illumina but with single molecules



New Second Generation Methods

• MGI

• Singular

• Onso

• Element

• Ultima



Element’s AVITI Platform

Shawn Levy, PhD
CSO & SVP Applications

© 2023 Element Biosciences, Inc.  
FOR RESEARCH USE ONLY
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Element Workflow – Surface Amplification
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Introduction to Avidity Sequencing



FOR RESEARCH USE ONLY© 2023 Element Biosciences, Inc. 

Highest Data Quality Demonstrated in Human Whole Genome
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1 error in 1,000

1 error in 10,000

1 error in 100,000
AVITI September 2023

AVITI May 2023

NovaSeq6000
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AVITI Disrupts Pricing Curve of The Incumbent
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Unleashing the Power of 
Genomics at Scale

Technology Introduction

49

December 15, 2023
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Fundamentals of our new sequencing architecture

Open flow cell 

200mm open-faced surface 
lowering cost and complexity

Machine learning

Powerful ML algorithms trained 
by genome-scale data

Proprietary and Confidential

Rotational symmetry 

Fast & efficient reagent delivery 
with ultra-fast imaging

“Mostly natural” chemistry

Non-terminating chemistry for  
efficient, long and fast reads
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We ditched the traditional flow cell

Proprietary and Confidential

Dramatically lower cost

More efficient reagent delivery

Faster scanning and optics

Standard silicon wafer
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Revolutionary new sequencing hardware

Wafer

Reagent dispenser

Camera

Proprietary and Confidential

• Low cost (standard substrate)

• ~10B reads per wafer (x2)

• Fast and efficient reagent delivery

• “Air gap” minimized contamination

• Rotational optical scanning
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Mostly natural chemistry combines advantages of
flow chemistry with optical scanning

• Majority nucleotides unlabeled to avoid quenching

• Minimal scarring supports longer reads

• Faster runs via 2min wash->image->cleave cycle

• Endpoint detection significantly improves accuracy

• Maintain signal linearity to at least homopolymer length 12

• Machine learning accounts for sequence context

Median signals vs. homopolymer

Proprietary and Confidential

homopolymer level
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PPM-Seq

• Duplex sequencing technique 
from Ultima

• Sequences both strands for 
greater accuracy

• Provides ~40% duplex as 
compared to other methods 
which are ~10%



Single Molecule (Third Generation) Methods

• Pacific Biosciences SMRT (Single Molecule Real Time) sequencing
– Uses a polymerase anchored in a zero-mode waveguide

– Images all wells at the same time in real time with digital video

– Interprets bases by the light signal visible at incorporation

– Very large instrument

• Oxford Nanopore Technologies
– Uses protein nanopores in synthetic membrane to thread DNA through

– Current sensors measure change in fluid current flow through pore to 
differentiate groups of multiple bases as they occupy the pore

– Very small instrument (attaches to computer like a USB drive)



PacBio SMRT

https://www.youtube.com/watch
?v=WMZmG00uhwU&feature=you
tu.be



PacBio “Hi-Fi” Reads

• Sized libraries, 10-20kb long

• Generate circular consensus on these

• Can read each linear piece 7-10 times

• Generates very high accuracy long reads

• Can assemble easily and even distinguish 
highly similar repeats



PacBio Kinnex



Oxford Nanopore



Current State of Oxford Nanopore

• Very long reads (100,000+, >1 Mbp)

• High error rates (10%+), non random
– Can read both strands (duplex) to improve accuracy (<1% error, but 

not all reads)

– Recent error correction modules improve accuracy but at some cost in 
coverage

• Moderate throughput

• Run times variable (few hours to 3+ days)

• Higher costs per base than Illumina (3-5x on PromethION)

• Reads end when fragment is finished or the pore dies



Limitations of Single Molecule Techniques

• Single molecule means no redundancy, so error rates will be 
high unless the same molecule can be read more than once

• Methods of detection are hard to massively parallelize

• Currently, these techniques actually require large amounts of 
DNA

• Getting very long reads requires very high quality input DNA

• Data processing and base calling is more expensive
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Prepping DNA for Sequencing

• Steps of library construction and sequencing

• Making Fragment libraries (to generate 
fragment or paired end reads)

• Making Jumping libraries (to generate mate 
pair reads)

• Pooling with or without barcoding

• Possible artifacts of library construction
– PCR-based artifacts

– Sequencing of primers, adapters, and tags



Steps of Library Construction

• Add adapters containing:

– Barcodes (for multiplexing)

– Sequencing primers

– Amplification primers

– Sequence for substrate attachment

• Amplify fragments by universal PCR

• Optionally pool barcoded libraries



Steps of Fragment Library Construction

• Extract DNA

• Fragment and 
possibly size select 
(300-600 bp)

• Add adapters

• Amplify 

• Select single 
molecules

• Amplify in 
clusters/beads



Steps of Jumping Library Construction

• Extract DNA, fragment 
and size select (2-40 
kb)

• Circularize with 
labeled adapters

• Fragment and size 
select (300-600 bp)

• Select fragments 
containing labeled 
adapters

• Proceed as for 
fragment library



Steps of Linked Read Library Construction

• Extract DNA, 
fragment and size 
select (50+ kb)

• Isolate large 
fragments

• Fragment, barcode, 
and size select (300-
600 bp)

• Pool and proceed as 
for fragment library



Steps of PacBio Library Construction

• Extract DNA, fragment and size select (50+ kb)

• Add hairpin adapters to both ends



Pooling with barcoding

• Unique DNA tags identify samples
• Allows multiple distinct samples on one run/lane
• Advantages:

– Reduced cost of sequencing for small samples
– Analysis is identical to unpooled data

• Disadvantages:
– Some small throughput loss due to barcode fails
– Data mis-assignment from bad barcode reads
– Increased per sample cost for library construction



Different Indexing Schemes

• Combinatorial indexing can be subject to barcode swaps

• Unique dual indexing allows detection of swaps



Pooling without barcoding

• Mix input DNA without identification

• No way to definitively separate data from different samples afterwards

• Advantages:
– Single library prep for a number of samples

– No yield lost to barcodes

• Disadvantages:
– Loss of all individual associations

• Loss of ability to use replicates!

– No check on accuracy of pooling



PCR-based artifacts

• Most libraries are PCR amplified during construction
• After library construction, single molecules are isolated and then amplified again 

for sequencing
• Errors from library construction PCR will not be detectable as sequencing errors
• Regions with secondary structure or extreme GC content:

– Will amplify poorly and be underrepresented
– May form small or weak clusters with poor sequence quality

• PCR may form chimeric sequences (especially in targeted designs)
• PCR amplification may result in duplicated sequences



PCR Errors: How Much PCR?

• You may be doing more PCR than you think

• Initial amplification of sample

• Targeting PCR

• Library amplification

• 100 rounds of PCR is equivalent to a 2 order of magnitude drop 
in polymerase accuracy



PCR-based artifacts: PCR bias

• Most PCR protocols work best for ~50% GC

• Extreme GC sequences are underrepresented

From Aird et al., Genome Biology (2011)

Red = standard PCR protocol
Other colors = modified PCR protocols



PCR-Free Libraries

• No PCR amplification in library construction

– Not the same as no PCR, depending on other steps

• More uniform coverage by GC

• Fewer regions of 0 coverage

• Still some bias as cluster formation is PCR-like

• Requires more DNA (200-500ng vs. as low as 5ng for PCR+)



GC Bias on Modern Illumina



Sequencing of primers, adapters & tags

• Not every base you sequence is useful

• Primers will be present if you used PCR to target your input DNA
– Sequence from primers does not represent target

– Variation seen (or not) under primers is not real

– Overlapping products will allow analysis of the primer-covered regions

• Short fragments may read through to adapter

• Custom barcodes or other tags may get sequenced too, though most 
vendor tags will be removed automatically
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