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* Modeling demographic history: Population trees vs gene trees
* The SFS and coalescent trees

* Fastsimcoal?2 principles — composite likelihood

* Approximate Bayesian Computation

Part |l

* Example of applications to different problems and types of
data



What can we learn from population genomic data?

«Model-free» methods

Genomic

data e.g. PCA
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Demographic history of populations

Population tree

Past demographic events:
= Population split
= Migration events

= Changes in effective N1 N
population sizes (expansions O
or bottlenecks) c

= Temporal changes in =
migration rates and effective B e

sizes




Why do we care about demographic history?

It is often interesting in itself
* What is the amount of gene flow? Time of split?

Demography affects the efficiency of natural selection

* Response to selection is different in small vs large populations,
with vs without gene flow, etc.

Demographic history affects genome-wide patterns
* "null" model: regions under selection detected as outliers.
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Coalescent trees “link” population history to
observed genetic patterns

Coalescent theory describes the expected gene trees, accounting
for mutation, recombination and demographic history

7 ne=—Coalescence

time

Pop3
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Rosenberg and Nordborg (2002) Nat Rev Genetics



Gene trees vs. Population trees

Gene trees reflect the ancestral
relationship of sampled gene
copies/chromosomes (before adding
mutations).

The relationship between
populations is given by the
population tree.

In phylogenetics it is usually
assumed that the gene tree reflects
the population/species tree, but
that is not the case in population
genetics.
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Species tree

Activity
Population tree vs species trees in 10 Mya
Human, Chimp and Gorilla
6 Mya
What is the proportion of polymorphic sites in the | gorilla

genomes that fall into each gene tree?

A) 99.0% (H,C); 0.5% (H,G); 0.5% (C, G)
B) 90.0% (H,C); 5.0% (H,G); 5.0% (C, G)
C) 70.0% (H,C); 15.0% (H,G); 15.0% (C, G)

1 single species tree
3 possible gene tree topologies

Gene tree 1 Gene tree 2 Gene tree 3
(H,C) (H G) (C,G)
human chimp gorilla hurnan chimp qgorilla human chimp gorilla

(H,C):G (H,G):C (C,G):H



Incomplete lineage sorting: Gene
trees at a particular gene favor a
topology different from the
species tree.

1 single species tree
3 possible gene tree topologies

State HC1 State HC2

A A

human chimp gorilla human chimp garilla
(H,C):G
70%

Species tree

10 Mya
6 Mya
gorilla
State HG State CG
human chimp garilla hurman chimp goilla
(H,G):C (C,G):H
15% 15%

Scally et al. (2012) Nature 483, 169-175

Hobolth et al (2007) PLOS Genetics 3(2): e7. doi:10.1371/journal.pgen.0030007



Reconstructing the demographic history

from genomic data

Because of recombination, different regions of the
genome can have different gene trees

 Demography is expected to affect the
entire genome

* Natural selection acts on specific
functional regions

Model without migration

A\

All gene trees are consistent with the
population tree. Independent gene
trees can be seen as independent

y

replicates of the same population tree.

awn
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Reconstructing the demographic history
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Expected coalescent times in a single constant size population

For a sample of n

gene copies the 200r4N-F-------------- * e
expected TMRCA is //
approximately 4N, (= 2
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W = Coalescent event

Discrete time
in generations



Activity
Check your intuition about coalescent gene trees

What are the longest branches we expect in a single

constant size population?
- A: External branches (tips of gene tree)
- B:Internal branches

Do we expect the relative branch length to differ in

large and small populations?

- Yes
- No



Expected coalescent times in a single constant size population

For a sample of n
gene copies the
expected TMRCA is
approximately 4N,

Continuous time
(in 2N units)
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W = Coalescent event

E(T2)=1— E[T2]=2Ne

Discrete time
in generations

Long internal branches - when there is only 2 lineages left, we expect
them to take 2Ne generations to coalesce



The expected TMRCA is 4Ne, but there Is a large variance!
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Five independent genomic regions from the same constant size population.

Hein et al (2004) Gene Genealogies, Variation and evolution



Gene trees in expanding populations

Stationary Population Expanding Population
past past

With less lineages
the longer the time
intervals between

coalescent events

0°00(

Most coalescent
occur in the ancestral
population, when the
size is smaller.
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* Coalescent rate is larger in smaller populations, and so we expect smaller intervals
between coalescent events in smaller populations

* Coalescent rate is lower with a lower number of lineages, and so we expected larger
intervals between coalescent events as the number of lineages decrease



Stationary population |
gene trees at five genome regions
(all share same population history!)

v N = ==|:1 = L ﬁtz:l:‘ﬁ

Figure 4.2 Five replicates of the coalescent process with constant population size for a
sample of ten genes. Note the large variance in the time of the MRCA among replicates.

Expanding population
gene trees at five genome regions

(all share same population history!) ‘ |

Figure 4.3 Five replicates of the coalescent with exponential growth, g = 1000, for a
sample of n = 10 genes. Note the smaller variance in the time until the MRCA compared
to the same quantity in Figure 4.2.

Hein et al (2004) Gene Genealogies, Variation and evolution



Gene trees for decreasing populations

Stationary Population Bottleneck Population
past _ past
2 With less lineages 2|
5 the longer the time -
2] intervals between g | Most
" coalescent events coalescent
2 | events
i o occur in
2 ‘ recent
) times, when
g | the size is
° smaller.
g I L e e Lo—
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v present

present Long internal branches



* If we could observe directly the gene trees, we
could easily reconstruct the population tree and
the demographic history.

* But we do not observe gene trees...

* We can still learn about gene trees from the
observed mutations and the allele frequencies in
samples



Adding neutral mutations to gene trees under
the Infinite sites model

Gene tree with mutations Sequence data
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No back mutations, no multiple mutations on the same site.



Adding neutral mutations

The shape of neutral coalescent trees only depend on the population demography, and not on the
mutational process. Assuming that all alleles have the same fitness, the mutational process can be
modeled as an independent process superimposed on a realized coalescent tree.
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Mutations just accumulate along the branches of the tree according to a Poisson process with rate A, = ut.
for the i-th branch of length t.. The Poisson process is stochastic but it should be immediately obvious
that long branches will carry more mutations than short branches

Hein et al (2004) Gene Genealogies, Variation and evolution



We expect less rare variants in populations that went
through a bottleneck

* Mutations accumulate along the branches.

* The longer a given branch the more likely it becomes that a mutation have
happened on it.
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We expect more rare variants in expanding populations
than in populations with a constant size

Stationary Population Expanding Population

past

Mutations shared
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Activity
What would be the Tajima’s D for these bottleneck and
expansion scenarios?

Bottl kP lati
ottleneck Population Expanding Population

In an expanding

Mutations shared population, most
by 4 descendents mutations are only found
71 in a single lineage -
< SINGLETONS
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Activity
What would be the Tajima’s D for these bottleneck and
expansion scenarios?

Bottl kP lati
ottleneck Population Expanding Population

In an expanding

Mutations shared population, most
by 4 descendents mutations are only found
75 in a single lineage -
< SINGLETONS

0°0054 0°00001 0'00S2C} 0'0005}

Mutations shared

S ¢ by 6 descendents f B ' T
3 e >3
- .| i
B e o )% g
Tajima’s D >0 Tajima’sD< 0
n> 9w T< GW

What is the expected site frequency spectrum?



Site frequency spectrum (SFS)

The SFS summarizes efficiently
genome-wide data

Assuming a single population —
1Dimensional SFS

Outgroup ATACCG...
Individual 1 ATACCG...
Individual 2 ATTCGG...
Individual 3 ATACGG...

Data

Observed
SFS



Site frequency spectrum (SFS) '

Outgroup A
Individual 1 A
Individual 2 A
 The SFS summarizes efficiently individual 3 A Data
genome-wide data
e Assuming a single population — S
1Dimensional SFS Obs:;;’ed

SNP counts
2000 3000

1000

i

Frequency of derived allele



Site frequency spectrum (SFS)

|
Outgroup /T
Individual 1 AT
Individual 2 AT
* The SFS summarizes efficiently individual 3 /T Data
genome-wide data
e Assuming a single population — S
1Dimensional SFS Obs:;;’ed

SNP counts
2000 3000

1000

-

Frequency of derived allele



Site frequency spectrum (SFS) v
Outgroup A
Individual 1 ~TA
Individual 2 ATT Dat
* The SFS summarizes efficiently individual 3 /A ata
genome-wide data
e Assuming a single population — % 7 Observed
1Dimensional SFS SES

SNP counts
2000 3000
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Site frequency spectrum (SFS)

The SFS summarizes efficiently
genome-wide data

Assuming a single population —
1Dimensional SFS

The SFS ignores information about linkage.
It is best suited for the study of many
unlinked (or recombining) DNA sequences.

In a stationary population, the expected
SFS relative frequencies are given by:

0
E (§I ) = — Fu and Li, 1993

Outgroup ATACCG...
Individual 1 ATACCG...
Individual 2 ATTCGG...

Data

Individual 3 ATACGG...

4000

3000

SNP counts
2000

1000

Observed
SFS

0
|

0 1 2 3

Frequency of derived allele



CHROM

"Supercontig 1.
"Supercontig 1.
"Supercontig 1.
"Supercontig 1.
"Supercontig 1.
"Supercontig 1.

50"
50"
50"
50"
50"
50"

VCF (variant call format) files

POS

o

"246"
"549"
"668"
"765"
"780"

ID
NA
NA
NA
NA
NA
NA

QUAL
"44.44"
"144.21"
"68.49"
"108.07"
"92.78"
"58,38"

FILTER
NA
NA
NA
NA
NA
NA

FORMAT

"GT:
"GT:
"GT:
"GT:
"GT:
"GT:

AD:
AD:
AD:
AD:
AD:
AD:

DP:
DP:
DP:
DP:
DP:
DP:

GQ:
GQ:
GQ:
GQ:
GQ:
GQ:

PL"
PL"
PL"
PL"
PL"
PL"

BL2009P4 us23
"0|0:62,0:62:99:0,190,2835"
"1]/0:5,5:10:99:111,0,114"
NA

"9|0:1,0:1:3:0,3,44"
"0]0:2,0:2:6:0,6,49"
"0]0:2,0:2:6:0,6,49"

https://grunwaldlab.github.io/Population Genetics in R/reading vcf.html



https://grunwaldlab.github.io/Population_Genetics_in_R/reading_vcf.html

We can obtain the SFS from genotype call data

e

* 0 homozygote for reference allele Individual 1 0 2 0 1
e 1 heterozygote Individual 2 0 0 1 0
. Individual 3 1 0 0 0

* 2 homozygote for alternative »

Individual 4 0 1 0 0

allele

Individual 5 0 0 1 0
This can be done if we have - ‘
enough depth of coverage g "
(>10x) o =

0 o |

1 2 3 4 5 6 7 8 9 10

Observed SFS is a vector (1 dimensional SFS): derived allele frequency

nnnnnﬂn-nnn

SNP count 0



SFS from genotype call data

Even if we have millions of

SNPs we can summarize the
genomic data to 10 numbers 7
with the SFS!

250000

150000
|

SNF counts

The size of the SFS depends
on the number of sampled
individuals.

50000
I

0 0ee__

o 2 4 6 8 10

0
|
|
|

frequency derived allele
Observed SFS is a vector (1 dimensional SFS):

n--nl-nn-nn-

SNP count 0 250,032 152,300 76,504 45,362 30,210 15,329 5,642 3,524 2,123




Coalescent and the SFS

1
Internal branches 1

External branches !

present

Count SNPs
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frequency derived alleles



Coalescent and the SFS

present

w B U1 O

Count SNPs

1 2 3 45 6

frequency derived alleles



Coalescent and the SFS

past

= A recent population growth
following a bottleneck leads to
gene trees with long external
branches

= Very few mutations in the internal
branches

) oo oo ° e o v

= Most mutations in long external oresent
branches are only found in one o |
lineage, resulting in an excess of o7
. 6

singletons S .
/ 4
)
S 3
o 2
© ]

1 2 3 4 5 6
frequency derived alleles



SFS depends on past demography

0.7 ~

B Stationarity B Expansion i Bottleneck

Relative frequency of SNP counts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Absolute Derived allele frequency



Natural selection also affects the SFS

25

20

Key: W Neutral
B BGS
@ Fitted growth

1 2 3 4 5 6 7 8 9 10 11 12 13

Allele frequency

15

Frequency of occurrence
10

14-49

TRENDS in Geneics

Background selection (BGS) leads to patterns similar to
population expansion.

Bank et al (2014) Trends in Genetics



Population structure

Migration events can be incorporated
into gene trees.

Migration from Pop 2 to Pop 1, leads
to lineages moving from Pop 1 to pop
2 backward in time.

At each generation, the probability of
immigration into population 1 from
population 2 is given by:

Pr(migrate) =n,*m
Where n, is the number of lineages in

population 1, and m is the
immigration rate.

MRCA

Time Type of
scale event

Past

Deme 2

y

A

= Coalescence

- Migration

= Coalescence

= Coalescence
= Migration
- Coalescence

L Coalescence
- Migration

Present



Site frequency spectrum "’ tetemenmes

- Popl and a frequenc _
(SFS) for multiple e o
populations

= Single population:
1D SFS

= Multiple populations:

2D, 3D, ..., Ny, SFS

Population 2

0 2 4 6 8 10
Many sites with a frequency of Population 1
derived allele of 1 in Popl1 and ¢ _ _
a frequency of 0 in Pop2 log10(proportion of sites)

(private singletons - mutations [ G —

only found in Pop1) 17 _10 8 -6 _4 2



lime

Model based inference

Sample genetic
markers

 What is the model that best fits the data?

 What are the most likely parameters of each model?

a lsolation b Isolation with migration c Isolation after migration
i e
_,_* i N! NI
N Ni N" ’ . N NI
(- B s « - = et -
g —_—
|
NA N\ N,\

What processes generated the data?

Define models to test specific hypotheses

d Secondary contact

Sousa and Hey (2013) Nat. Rev. Gen.

“All models are wrong but some are useful”

George Box




Site frequency spectrum (SFS)

a lIsolation b Isolation with migration
A =
4
N, N, N, ::EE N,
The SFS contains information £ 3
about the demographic history of : e

populations

o
—
o

[=1] co

Population 2

Population 2
'

™~

Population 1 Population 1
log(prob)
m:—
-12 -10 -8 -6 —4 -2

Sousa and Hey (2013) Nat. Rev. Genet.



Inferring the demographic Genomic Data
history from the SFS

Parameters:

- Time of split
Migration rates
Effective sizes

I
I
I
I
I
I
I
I
I
I
I
I

Model I
I
I
I
I
I
I
I
I
I
I
I



Inferring the demographic Genomic Data
history from the SFS 1

Observed SFS

* The likelihood is easily computed
based on the expected SFS under
a given model

* There are different ways to

Likelihood
obtain the expected SFS
* Diffusion (forward in time)
» Coalescent (backward in time) Expected SFS

|

Population 2

Parameters:

- Time of split

- Migration rates
- Effective sizes

Excoffier et al. (2013) PloS Genetics



Composite likelihood

Even though we can have linked sites, we
assume that all sites are independent.
Given S polymorphic sites (SNPs) out of L
sites (Adams and Hudson, 2004) the
composite likelihood is:

n-1
CL=Pr(X|[6) I:)oL_S (1- Po)SH p"

NG

probability of no probability of at least
mutation on the tree one mutation in the tree

These probabilities depend:
- Number of monomorphic sites
- A fixed and mutation rate

-

SNP counts

The 3 ingredientes for likelihood )

s _ [ Observed SFS
g m; counts
Model = 4 Expected SFS
—_— o egeg o
| = = . probabilities
N T TN 3 o PiP

2

4 =} a8 10 12

frequency of derived allele j

z
00 01

o

$

Composite likehood

Excoffier et al. (2013) PloS Genetics



Expected SFS under a given model using coalescent

The probability of a SFS entry i can be estimated under a specific model 6 from its

expected coalescent tree as (Nielsen 2000) E(t |9)
" TET|0)
Where t; is the total length of all branches directly leading to i terminal nodes,

and T is the total tree length.

It gives the relative probability that if a mutation occurs on one of these b,

branches, it will be observed i times in the sample

This is true under the limit of low mutation rate.
No more than 1 mutation per site, back
mutations not allowed!




Everything is relative if we do not know the mutation
rate and number of monomorphic sites

T, = total
branch length

n———n—n-

SNP probability 0 Sum(b,;)/  Sum(b,)/ Sum(b;)/ Sum(b,)/  Sum(b;)/  Sum(b;)/
p; T T T T T T

* The same expected SFS can be obtained in a large or small tree

* We need a mutation rate and the number of monomorphic sites to distinguish
among the two!



Many methods based on the SFS

Different ways to obtain the expected SFS p; under
different demographic models

* Coalescent-based
* Multiple populations
Fastsimcoal2 (Excoffier et al 2013 PLoS Genetics)
Momi (Kamm et al 2015) and Momi 2 (Kamm et al 2021)
Rarecoal (Schiffels et al 2016 Nat Genetics)
* Single population
Stairway plot (Liu and Fu, 2015 Nat Genetics)

* Diffusion-based
Dadi (Gutenkunst et al 2009 PLoS Genetics)
Multipop (Lukic and Hey 2012 Genetics)
Moments (Jouganous et al 2017 Genetics)



Inferring demographic history with
fastsimcoal2 based on the SFS

e Fastsimcoal2 can estimate parameters from the
SFS using coalescent simulations

* Maximum (composite) likelihood method

* Uses a conditional expectation (CEM)
maximization algorithm to find parameter
combinations that maximize the likelihood

* It approximate the expected SFS by performing
coalescent simulations (>100,000)



Fastsimcoal2 principle: approximate the
expected SFS with coalescent simulations

Use at least 100,000
coalescent simulations

frequency

a lIsolation

Time

Coalescent
simulations

Expected SFS
p; probabilities

02 03 04

=

4 =} a8 10 12

00 01

o

frequency of derived allele

Log(Fastsimcoal2 expected SFS)

- X nsim 1e+06

B T=0.1 - Expected vs. Fastsimcoal SFS

1 © nsim 1000
A nsim 10000
+ nsim 1e+05

| - | | | |
-4 3 -2 1 0

Log(“True” expected SFS)

Excoffier et al. (2013) PloS Genetics; Chen (2012) TPB



Properties of composite likelihoods

This composite likelihood (CL) is not a proper

likelihood due to the non-independence of allele — Composite likelihood
frequencies at linked sites. — “correct” likelihood
» CL is maximized for the same parameters as =7
full likelihood =
» Can be used for parameter estimation &

* Confidence intervals cannot be estimated from
likelihood profile, need to bootstrap

log10i{Likelihood)

» CL surface might be more complex than § N
likelihood surface, and thus more difficult to X
explore and get the global maximum _
» CL ignores information on linkage o
disequilibrium (recombination) between sites S
~ T T T T T 1

0 4000 8000

Effective size (Ne)
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Protocol for parameter estimation with
fastsimcoal2 using the SFS

Get the observed SFS:

» derived SFS (DAF or unfolded SFS), when the ancestral state is known;

* minor allele frequency SFS (MAF or folded SFS) when the ancestral
state is unknown

Define the demographic model

Estimate the parameters — repeat 50-100 runs, and selecting
the run with maximum likelihood

Bootstrap to obtain confidence intervals for each parameter
— bootstrap 10-100 datasets, by repeating a few runs for
each dataset

* For datasets with linked sites use block-bootstrap, diving the genome
into blocks



Potential problems

Maximization of the CL is not trivial (precision of the
approximation and convergence problems)

Need to repeat estimations to find maximum CL

Needs genomic data (several Mb), difficult to have gene-
specific estimates

Next-generation sequencing data must have high coverage
(>10x) to correctly estimate SFS



Limitations of estimating demographic
parameters from SFS

Can one learn history from the allelic spectrum?

Simon Myers?, Charles Fefferman®, Nick Patterson®*
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A demographic history with the same spectrum as a constant size population
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Volume 120, March 2018, Pages 42-51
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On the decidability of population size
histories from finite allele frequency
spectra
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Geometry of the Sample Frequency Spectrum and
the Perils of Demographic Inference

Zvi Rosen, & Anand Bhaskar, Sebastien Roch and Yun S. Song

GENETICS October 1, 2018 vol. 210 no. 2 665-682;
https://doi.org/10.1534/genetics.118.300733

Fundamental limits on the accuracy of
demographic inference based on the sample
frequency spectrum

Jonathan Terhorst and Yun S. Song

PNAS June 23, 2015 112 (25) 7677-7682; first published June &, 2015 https://doi.org/10.1073/pnas. 1503717112
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Outline part Il

Example of Applications:

 Human dispersal out of Africa (high quality whole-genome) —
lessons on model comparison with linked SNPs

 Human colonization of Siberia and America (ancient whole-
genome data) - lessons on dealing with sequencing errors

e Deer mice colonization of Nebraska Sand Hills (targeted re-
capture data) — lessons on effects of filtering

* Divergence times and gene flow in sawflies (ddRAD-seq data) —
lessons from model comparison with ddRAD

e Hybridization in freshwater fish (GBS data) - lessons from
inferring relative parameters with limited data



Nourlangie, Kakadu National Park, NT, Australia



A genomic history of Aboriginal Australia

Anna-Sapfo Malaspinas®23*, Michael C. Westaway**, Craig Muller'*, Vitor C. Sousa®3*, Oscar Lao™>®*, Isabel Alves”37*,
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Ewaninga Rock Carvings Conservation Reserve, NT, Australia



Australia harbors some of the oldest modern human
remains outside Africa

Many sites and remains

o linaey 100 A (N - *| dated to be older than 40
e 52-42 (j . kya, suggesting a human

" @ @1 : settlement 47.5-55 kya

s 2O
il
20°S 1

a5

s

«w @ Sites ~40 kya or older (Wl Land above 500 m elevation . R
g (O Human remains ~40 kya or older Exposed shelf at ¢.50 kya (75 m isobath) t 39-37 ?
Arid & semi-arid (<250; <350 mm rainfall) Exposed shelf at LGM (130 m isobath) @2‘%_37
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One wave out of Africa vs Two waves out of Africa




83 high-coverage Aboriginal Australians genomes

"East Asia"
"Australia"
"Polynesia"

{"Melanesia"

Average depth of coverage: 65x

2 'New Guinea

&'Europe"
& '"India"ée

+:3%
"‘

Western Central Desert (WCD)



A note on recovering the SFS from
g e n O m i C d a.ta. a) Low depth of coverage, no GQ filter, allowing missing data

Singletons

- O True
g — B Sampled
g 0 I' E 2
. . = K4 A
e Simulation study 5 ot g .
3 . l: 5 3 ]
* Low depth of coverage and s v .
.. . 3t =i
missing data leads to biases oy L
towards rare variants
True SFS

b) Depth of coverage similar to observed data, GQ>30 filter, no missing dat

8 _ Singletons o Tre
= B Sampled
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Europe
2 Sardinians % East Asia
4 Zl—lan Chinese

/

West Africa

2 Yoruba /

Aboriginal Australians
7 Western Central Desert (WCD)

% Archaic human genomes:
- 1 Neanderthal (~66 kya)
- 1 Denisovan (~52 kya)

Mutation rate assumed

1.25 x 108 /site/gen
Scally and Durbin (2012) Nat. Rev. Genet.

Generation time

29 years/gen
Fenner (2005) Am. J. Phys. Anthropol.

Since we want to infer demography we tried to minimize the number of

sites affected by selection:

« 985 1Mb blocks outside genic regions and CpG islands (~4.3

Million SNPSs)
« 5 dimensional SFS (16,875 entries)

« Confidence intervals obtained using block-bootstrap



Towards a model to test the hypotheses:
One vs Two waves Out of Africa

e Data (SFS) Do you have an outgroup?
- Yes — use the derived (unfolded) SFS
‘ - No — use the minor allele frequency
* (Re-)Define model spectrum (folded)
(hypOtheses to teSt) Do you have monomorphic sites?
' - Yes - then, given a mutation rate you
can infer the absolute times and
e Run fastsimcoal2 effective sizes
- No —then all your estimates need to
‘ be relative to a fixed parameter (fixed
e Estimates! Ne or fixed time)

e Assess the fit to the data



We always get results...

Divergence
times (kya)

222 i . W Africa -
Ghost

| _—
[ —

A\

Evidence of two waves
Out of Africa:

* Old split leading to colonization 67 |- Eurasians
of Australia (81kya)

81  ——  Australians

* More recent split leading to
colonization of Eurasia (67 kya)

37 —t—  Europe - Asia
W Africa Europe East Asia Australia y Present
(Yoruba) Ghost (Sardinians) (Han Chinese) (WCD)
Legend:

Migration, 2Nm>1 ]  Ancestral bottleneck

Migration, 2Nm<1 [ Continent-specific bottlenecks




Towards a model incorporating Neanderthal and
Denisovan admixture

Erectus?

" Neanderthal

Alves et al. (2012) Plos Genetics;

= Non-African populations: 1-4% estimated Neanderthal admixture
= Aboriginal Australians and New Guineans: 3-6% estimated Denisovan admixture
= Archaic admixture can affect times of split estimates



Two-waves out of Africa

Divergence
Times

8 Two Out of Africa
bottlenecks

___________ Out of Africa
I Australians

At

Out of Africa
Eurasians

= Two different divergence times
(At >>0)

= Two independent bottlenecks
aSSOCIated Wlth the tWO OUt Of West Africans Lézztaz?lls: Europeans Aif:;:s Australians y Present
Africa events




Two-waves out of Africa

I _________________ I
Divergence
| Times |
|1 |
I |
| n Two Out of Africa

bottleneck : I
I otienecks | . Outof Africa y

I Australians
At l
T ey Out of Africa l

I Eurasians
|
I |
L _____ L] — L] | L] J

= Two different divergence times
(At >>0)

= Two independent bottlenecks
aSSOCIated Wlth the tWO Out Of West Africans :22?25:5: Europeans AE?:I:S Australians y Present
Africa events




Two-waves out of Africa

time

_ - _ West  ghost
= Two different divergence times Africans

(At >> 0)

= Two independent bottlenecks
associated with the two Out of
Africa events

=) Neanderthal admixture
=== Denisovanadmixture

Eurasians Australians



One wave out of Africa

T — -

. Neanderthal admixture
@ Denisovan admixture

w=) Neanderthal admixture
= Denisovan admixture

time

At~0

West ghost Eurasians Australians

= Similar divergence times (At close ~ Africans

to zero)

= One single bottlenecks associated
with the Out of Africa events

= A major admixture pulse with
Neanderthal



A single wave Out of Africa Is consistent with our
estimates when accounting for archaic admixture

Split/bottleneck

Admixture
times (kya) times (kya)
Point Estimate
.. . 95%Cl int I
 Similar divergence [95%Clinterval] +
time (At close to
zero) 1
T 58 Australians
B1-721 N\ | /' split
- 57 urasians split
[48-68]
|
v Present v Present
W Africa Ghost Europe East Asia Australia
(Yoruba) (Sardinians) (Han Chinese) (WCD)
ﬁ Nea-nderthal admixture Migration, 2Nm=>1 . Ancestral bottleneck
=) Denisovan or related Migration, 2Nm<1 Continent-specific

archaic admixture bottlenecks




A single wave Out of Africa Is consistent with our
estimates when accounting for archaic admixture

 Similar divergence
time (At close to
zero)

* Bottleneck associated
with the Out of Africa
event

Admixture Split/bottleneck
times (kya) times (kya)
Point Estimate

[95%Cl interval]
72 | Outof Africa
[60-104] bottleneck
[
58 Australians
B1-721\ | /' split
- 57 urasians split
[48-68]
[ |
v Present v Present
W Africa Ghost Europe East Asia Australia
(Yoruba) (Sardinians) (Han Chinese) (WCD)
d Neanderthal admixture Migration, 2Nm=>1 . Ancestral bottleneck
memel - Denisovan or refated Migration, 2Nm=<1 C Continent-specific
archaic admixture bottlenecks




A single wave Out of Africa Is consistent with our
estimates when accounting for archaic admixture

Admixture Split/bottleneck
times (kya) times (kya)
Point Estimate
.. . 95%Cl i |
 Similar divergence Admixture [95%Clinterval) +
time (At close to proportions ,
(%) 72 | Out of Africa
zero) [60-104] bottleneck
60 I 23
. [55-84] [1.1-3.5] 58 Australians
. B(?ttleneck assouat-ed 5172 |/ st
with the Out of Africa 51 11 .
.- . 57 urasians split
event [40-59] [0.2-2.7] [48-68]
* A major admixture .
pulse with
Neanderthal in T
ancestors of all non-
Africans
Y Present v Present
W Africa Ghost Europe East Asia Australia
(Yoruba) (Sardinians) (Han Chinese) (WCD)
d Neanderthal admixture Migration, 2Nm=>1 . Ancestral bottleneck
=) Denisovan or related N Continent-specific
archaic admixture Migration, 2Nm-<1 . P

bottlenecks




A single wave Out of Africa Is consistent with our
estimates when accounting for archaic admixture

Admixture Split/bottleneck
times (kya) times (kya)
Point Estimate
.. . 95%Cl i |
 Similar divergence Admixture [95%Clinterval) +
time (At close to proportions ,
(%) 72 | Out of Africa
zero) [60-104] bottleneck
60 2.3
[ |
. - - 58 i
* Bottleneck associated [55-84) | [11-3.9] P
with the Out of Africa 51 11 .
= . 57 urasians split
event [40-59] [0.2-2.7] [48-68]
o ; ; 4 ma 40
A maJor.admlxture srso] T B350
pulse with . i
. | Europe-
Neanderthal in [20-55] | East Asia split
ancestors of all non-
Africans
Y Present v Present
W Africa Ghost Europe East Asia Australia
(Yoruba) (Sardinians) (Han Chinese) (WCD)
d Neanderthal admixture Migration, 2Nm=>1 . Ancestral bottleneck
=) Denisovan or related N Continent-specific
archaic admixture Migration, 2Nm-<1 . P

bottlenecks




Model captures aspects about the observed data

log10(SNP counts)
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Model captures the higher derived
allele sharing between Eurasians and Yoruba

D-statistics
(Australian, X; Yoruba, Chimp)

0.08

0.06
I

—

l
|
{

Australia Europe Yoruba Chimp X : 8
= S —
or
EaSt ASIan m Simulated under the best model
O Cbeerved bootstrap replicates

0.00

D-statistics suggest that Yoruba and Eurasians
share more derived alleles than Yoruba and
Australians

Europe East Asian

X population



Summary
Aboriginal Australians genomes support a single major
wave out of Africa

* Accounting for archaic admixture @ Neanderthal admixture
with Neanderthal and Denisovan

_ () Denisovan admixture
was crucial to understand

>
population divergence /r
Y ®
* Genomic data consistent with a sifigle
single major dispersal event out of Out of Africa

Africa (60-104 kya)




https://doi.org/10.1038/s41586-019-1279-z

The population history of northeastern
Siberia since the Pleistocene
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Colonization of Siberia

Yana RHS (31,600 years ago)
/ Whole-genome depth of coverage 25x

Levanluhta

Kolyma (9,800 years ago)

Us.';shim (45 kya)
Alontov.a Gora (17 kya)
Mal'ta (24 kya)
[ | Duvanni Upward Sun
)ev (Kolyma) River (11.5 kya)
$ .
Ekven
@) Ust'Belaya
Tianyuan (40 kya) Ol'skaya (Magadan)
*
O
Devil's Gate

Cave

Whole-genome depth of coverage 14x




Hypothesis: Continuity vs
Replacement of populations

Data: Ancient and present-

day samples; 625 blocks of

1Mb (~1.5 Million SNP), far

from genic regions and CpG
islands

Method: Composite
likelihood - fastsimcoal?2

(Excoﬁier et al, 2013 Plos GenetiCS) Europe Ancient Ancient Neo- East
(Sardinia) North Paelo- siberian Asia
Siberians siberian (Even) (Han)

(Yana) (Kolyma)




Hypothesis: Continuity vs
Replacement of populations
|

past

For instance: ]
B = 1 indicates continuity: g l ﬁ
Kolyma descends from Yana 5 . -
a
B = O indicates replacement ’L' Lanl
of Yana by Kolyma & Yy o
\ Europe Ancient Ancient Neo- East
present (sardinia) North Paelo- siberian Asia

Siberians siberian (Even) (Han)
(Yana) (Kolyma)




Site frequency spectrum is affected by damage
patterns in ancient DNA

Proportion of singletons in Kolyma

0.10 - is reduced to 1/3 of original!
* High proportion of D no GACST
singletons in Kolyma 0.08
probably reflect errors

1 006 —

* All analyses were

Relative number of SNPs

performed discarding oo WM |
singletons
0.02 n H
0.00 = E E I:| = | l:| = |
Derived allele frequencyin:/g = i S 2 3z 2 g g 2 32
Sardinian gi2is 8 8 8 §& s g 3
Yana A P R
Karitiana

Kolyma #SNPs original dataset: 1,518,818

Han #SNPs after discarding transitions G>A,C>T: 938,911



Han

Han

Data: Marginal 2D-SFS
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Observed Data: Joint 5 population site-frequency spectrum (1125 entries)
obtained from 625 blocks of 1Mb (~1.5 Million SNP)
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Model comparison and likelihood profiles consistent with
replacement with gene flow

T T T T T T
0.0 0.2 04 06 08 1.0

Yana>Evens (@)

T T T T T T
0.0 0.2 04 06 08 1.0

Kolyma=>Evens (7)

log10(Alhood)

-6000 -5000 -4000 -3000 -2000 -1000 0

log10(Alhood)

-1000 0

-6000 -5000 -4000 =-3000 =-2000

T T T T T T
00 02 04 06 08 10

Yana>Kolyma (/)

L

1

1

T T T T T
0.0 02 04 06 08

Asia>Yana (o)

T
1.0

past

time
] FI
Y

a
llllllllllllll)r
T
‘ TR =
\ Europe Ancient Ancient Neo- East
present (sardinia) North Paelo- siberian Asia

Siberians siberian (Even) (Han)
(Yana) (Kolyma)




Log10(likelihood)

Model comparison and likelihood profiles consistent with

replacement with gene flow
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Estimates of best nested model indicate
replacement with gene flow

Date (kya) | |
Split Yana |~ 38.7
(32.2-45.8) l 29.2%
Contribution | 75 8
Yana>Kolyma | (14555) 16.6%
| (7.5-22.2)
) ) 3.9%
Contribution 13.3 (0.1-12.6)
Kolyma>Even (10.4-18.3) ®
v
Europe  Ancient North Ancient Neo-Siberians East Asia
(Sardinia) Siberians  Palaeo-Siberians (Even) (Han)

(Yana) (Kolymat)




Han

Han

Fit of expected SFS to observed data
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Expected SFS according to the parameters that maximize the likelihood



Han

Han

Fit of expected SFS to observed data
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Coat color adaptation in deer mice
Peromyscus maniculatus

On Sand Hills Off Sand Hills

* Habitat (soil color) correlated with
coat phenotype

* Field experiments suggest that light
color confers selective advantage
against visually hunting predators

 Nebraska Sand Hills were formed
8000 to 15,000 years ago

Linnen et al (2013) Science

Pfeifer*, Laurent™, Sousa* et al (2018) MBE



A transect across the Sand Hills (ON and OFF)

Sample locations “off” and “on” the Sand Hills
* 11 populations
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Latitude
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Evidence for isolation by distance but three groups
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Model-based inference

Is there evidence of gene flow between Off and On the Sand Hills?

Colonization from Serial colonization Colonization from Serial colonization
from South from Nortrl

Legend:

\ 4 Bottlenecks
associated with
founder events

Off N On Off S Off N On Off S Off N On Off S Off N On Off S

Estimates based on the joint 3D site frequency spectrum (SFS):
- folded SFS with 140,358 SNPs



Deer mice: Pairwise marginal 2D SFS
Since we did not have an outgroup we used the folded SFS

Observed 2D=SFS

20

I'e}
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[ _I—I_I
5 10 15 20
NORTH
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SOUTH

NORTH

Observed 2D=-SFS

15 20

SOUTH
10

log10(SFS counts) log10(SFS counts)

log10(SFS counts)



Estimates support south colonization

and high gene flow levels Time (kya)

Split Off North/South

* Recent time of colonization of 45.5 kya

Sand Hills ~3-5 kya, younger than
formation of Sand Hills 8-15 kya

* High migration rates across all
populations, inferred for all
models  F e

Split On|
3.7 kya

Migration rates above/below
arrows in units of 2Nm, i.e.
average number of immigrants
per generation.

Off N On Ooff S



Deer mice: Model fit to marginal SFS

Observed 2D-SFS Expected 2D-SFS Relative difference obs.-exp.
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Some lessons | learned working with the
deer mice data

* Be carefull when applying Hardy-Weinberg filters to
your data!

* Be carefull when filtering on depth of coverage
applying the same thresholds for all individuals!



The depth of coverage varied considerably
across individuals

Example of the DP distribution for each individuals, for individuals with mean DP>12

I
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individuals

* Applying the same threshold for all individuals can lead to biases

* Apply a filter on DP for each individual



Effect of HW filtering on demographic estimates
Removing sites with HWE excess and deficit leads to different estimates

* High migration between all
groups of populations (2Nm~20)

OFF North

ON North

ON South

OFF South

* No evidence of a strong

bottleneck signal associated with

colonization of SH
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Sawflies and RAD data
MOLECULAR ECOLOGY

Molecular Ecology (2016) doi: 10.1111/mec.13972

History, geography and host use shape genomewide
patterns of genetic variation in the redheaded pine
sawfly (Neodiprion lecontei)

ROBIN K. BAGLEY,* VITOR C. SOUSA,t MATTHEW L. NIEMILLER]} and

CATHERINE R. LINNEN~*

*Department of Biology, University of Kentucky, Lexington, KY 40506, USA, tcE3c - Centre for Ecology, Evolution and
Environmental Changes, Faculdade de Ciéncias, Universidade de Lisboa, 1749-016 Lisboa, Portugal, {Illinois Natural History
Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA




Sawflies Neodiprion lecontel

* Hymenoptera
* Plant-feeding insects
* Pine tree specialists

Ovipositor
(saw)

Same geographic area : ;

ﬁ S (= A=

width

N. pinetum N. lecontei



80 individuals from 77
localities and 13 host
species

* 100 bp paired-end
reads, mapped to
reference genome of
N. lencontei

* Depth of coverage
filter DP>10

ddRAD seq data
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Given the detected three groups (North, Central, South):
* What is the the population tree topology?
 What are the split times?

 What are the migration levels among groups?



Comparing models with composite likelihoods

e Fastsimcoal2 likelihood
is “correct” if all SNPs

are independent

* We can then compare
the model likelihoods

using Akaike

Information Criterion -

(AIC)

Composite likelihood

= «— | (assuming linked sites
o are independent)
s 87 —
L
e _ ~
E “correct” likelihood
= § | (all sites are actually
o ¥ independent)
O
O
[
Lo R
[
<= 1 I

0 4000 8000
Effective size (Ne)

Composite likelihood provide unbiased maximum likelihood
parameter estimates, but the likelihoods are inflated



A strategy to compare models

Divide the dataset into LD blocks.

Create a dataset with all SNPs
(including linked SNPs)

For each model, obtain the
parameters that maximize the
likelihood (this is ok even with
linked sites!) and the corresponding
expected SFS

Create a dataset with
“independent” SNPs
(1 SNP per RAD tag)

Given the expected SFS of each
model, compute the “correct”
likelihood for each model with the
dataset with independent SNPs

Compare models with AIC

Divide genome into blocks
I I S

Observed SFS with ALL SNPs

Run fastsimcoal2

NW N! N\ NI
v
E
=
Na

Model 1 Model 2

=d
>

Observed SFS with 1

NP lock
Expected SFS for each model SNP per bloc

“Correct” likelihood for each model



Comparing alternative models

Table 2 Summary of the likelihoods for the sixteen demographic models tested. Lhood (ALL SNPs) and Lhood (1 SNP) correspond
to the mean likelihood computed with the data sets containing ‘all SNPs’ (including monomorphic sites) and a ‘single SNP” (without
monomorphic sites) per RAD locus, respectively. Mean likelihoods were computed based on 100 expected site frequency spectra
simulated according to the parameters that maximized the likelihood of each model. Topology names for each model are as indicated
in Fig. S1 (Supporting information). AIC scores and relative likelihoods (Akaike’s weight of evidence) were calculated based on the

‘single SNP” data set following Excoffier ef al. 2013.

Migration Exponential North logio(Lhood)  logjo(Lhood) Relative
Topology allowed?  growth? bottleneck? ALL SNPs 1 SNP # Parameters AIC AAIC  likelihood
North-South No No No —46502.02 —7381.4 7 34006.70  75.69 0.000
North-Central No No No —46475.82 —7369.0 7 33949.44 18.43 0.000
South—-Central No No No —46502.18 —7381.6 7 34007.60 76.59 0.000
Trifurcation No No No —46501.54 —7380.4 5 33998.07 67.06 0.000
North-South Yes No No —46470.49 —7365.0 15 3394725 16.24 ~0.000
North-Central _ Yes No No —46462.24 —7361.5 15 33931.01 0.00 0.851
South-Central  Yes No No —46467.69 —7363.8 15 33941.57 10.56 0.004
Trifurcation Yes No No —46470.28 —7364.7 11 3393793  6.91 0.027
North-South Yes Yes No —46469.48 —7362.8 18 3394291 11.90 0.002
North-Central Yes Yes No —46461.17 —7361.7 18 33937.82  6.80 0.028
South-Central  Yes Yes No —46463.73 —7363.9 18 33948.15 17.13  ~0.000
Trifurcation Yes Yes No —46467.72 —7363.3 14 33937.39  6.37 0.035
North-South Yes Yes Yes —46467.45 —7361.5 20 33940.86  9.85 0.006
North-Central Yes Yes Yes —46461.25 —7362.1 20 33943.82 12.81 0.001
South-Central Yes Yes Yes —46463.58 —7364.1 20 33953.08 22.07 0.000
Trifurcation Yes Yes Yes —46466.06 —7362.4 16 3393693 592 0.044




Estimates favors a scenario where
North and Central diverged more recently with asymmetric gene flow
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The inferred population tree topology and divergence times are consistent
with divergence and range expansion from different refugia after LGM



Summary sawflies

e Fastsimcoal2 can be applied to RAD seq data

* We used a strategy to obtain (as close as possible)
the “correct” likelihood by dividing the data into
blocks, inferring the expected SFS for each model
with ALL SNPs, and then re-computing the “true”

likelihood with independent SNPs (1 SNP per block)

* Despite the reduced number of SNPs we were able
to discriminate models based on their likelihoods



Sofia Mendes
(EGB, CE3(C)

Inferring admixture In
freshwater fish species
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GBS data (48 individuals, 23,562 SNPs with ~37% missing data)
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D-statistic (ABBA-BABA)

(A) (B)
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D-statistic indicates that the relationship cannot be described by a bifurcating tree

Mendes et al. (2021) Heredity



Pairwise 2D-folded SFS without monomorphic
sites — inference based on relative parameters

e DP>10x

* Dowsampling 3 individuals from P1 (S. carolitertii),
4 individuals from H (S. pyrenaicus North), 3
individuals from P2 (S. pyrenaicus South)

* 8,758 SNPs — very small dataset!

* Folded SFS according to minor allele across the 3
populations

* Size of the three pairwise 2D-SFS: 175 entries

Mendes et al. (2021) Heredity



Relative parameter estimates
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Figure 511- Relative likelihoods of demographic models based on AIC. Compariscen of 8 models,
including models B and C without bottlenecks, with 1000 bootstrap replicates. (&) Boxplots of
relative likelinoods based on 3D-5F5% with all SNPs per block with n=3 5. caroliferfii, n=4 5.
pyrenaicus North and n=3 5. pyrenaicus South individuals. Size of the joint 3D-5F5 is SFSsize=441.



Protocol for model comparison based on
AlIC when we have independent SNPs

e Get the observed SFS
e Define the alternative models
e Perform 50-100 runs under each model

e Select the runs with maximum likelihood under
each model

* Compute the AIC (Akaike information critera) for
each model based on dataset with unlinked SNPs

e Select the model with minimum AIC



Demography and linked selection

Research article

Background selection as null hypothesis in
population genomics: insights and
challenges from Drosophila studies

Josep M. Comeron NEWSLETTER ABOUT [

(4 i
Published: 06 November 2017 https://doi.org/10.1098/rstb.2016.0471 7 eLife = HOME MAGAZINE COMMUNITY INNOVATION

Research Article
Genetics and Genomics

Background selection and biased gene
conversion affect more than 95% of the human
genome and bias demographic inferences

Fanny Pouyet ™, Simon Aeschbacher, Alexandre Thiéry, Laurent Excoffier ®
The Imp a-Ct Of Purlfylng and BaCkgro und University of Bern, Switzerland; Swiss Institute of Bioinformatics, Switzerland; University of Zurich, Switzerland
SeleCtion On the Inference Of Population Aug 20, 2018 - https://doi.org/10.7554/eLife.36317 3 (@]
History: Problems and Prospects J

Parul Johri ™, Kellen Riall, Hannes Becher, Laurent Excoffier,
Brian Charlesworth, Jeffrey D. Jensen

Molecular Biology and Evolution, Volume 38, Issue 7, July 2021, Pages
2986-3003, https://doi.org/10.1093/molbev/msab050
Published: 16 February 2021
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PLOS BIOLOGY

& OPEN ACCESS

CONSENSUS VIEW

Recommendations for improving statistical inference in
population genomics

Parul Johri, Charles F. Aquadro, Mark Beaumont, Brian Charlesworth, Laurent Excoffier, Adam Eyre-Walker, Peter D. Keightley,
Michael Lynch, Gil McVean, Bret A. Payseur, Susanne P. Pfeifer, Wolfgang Stephan, Jeffrey D. Jensen

Published: May 31, 2022 « https://doi.org/10.1371/journal.pbio.3001669
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